Pre-Calculus 11

Chapter 8 Review

Name: KEY

1. Solve the following by graphing.

a)
$$3x-4y=8$$
$$2y-3x=2$$

b)
$$y-x^2 = -5$$

 $y-2x = -2$

c)
$$y+5=(x-2)^2$$

 $y-5=-(x-4)^2$

$$xy = 6$$

2. Solve by using the graphing calculator.

a)
$$y = x^2 - 4$$

 $y = 2x - 5$

b)
$$y = x^2 + 4x + 3$$

 $2y = x + 10$

c)
$$x^2 + y^2 = 9$$

 $y = x^2 - 3$

$$(-2.34, 2), (0, -3), or (2.34, 2)$$

$$\begin{array}{c} x - 2y + 1 = 0 \\ xy = 6 \end{array}$$

$$(-4, -1.5)$$
 or $(3, 2)$

e)
$$x^2 + 4y^2 = 16$$

 $y = 2 - x^2$

$$(-1.94, -1.75), (0, 2), or (1.94, -1.75)$$

f)
$$y = x^2 - 6$$

$$xy = 5$$

$$(-1.79, -2.79), (-1, -5), or (2.79, 1.79)$$

3. Solve algebraically.

a)
$$2x - y = 3 \\
3y + 2x = 15$$

$$\xrightarrow{2x - 3 = y}
3y + 2x = 15$$

$$3(2x-3)+2x=15$$

$$6x-9+2x=15$$
 $2(3)-3=y$

$$2(3)-3=y$$

$$8x = 24$$

$$3 = y$$

$$x = 3$$

b)
$$x-2y=12 \rightarrow x=2y+12 \\ 2y+3x=8 \rightarrow 2y+3x=8$$

$$2y+3(2y+12)=8$$

$$2y+6y+36=8$$
 $x=2(-3.5)+12$

$$x = 2(-3.5) + 12$$

$$8y = -28$$
$$y = -3.5$$

$$x = 5$$

c)
$$y = x^2 + 6x + 5$$

 $3y + x = -15$ $\rightarrow y = x^2 + 6x + 5$
 $x = -3y - 15$

$$y = (-3y-15)^2 + 6(-3y-15) + 5$$

$$y = 9y^2 + 90y + 225 - 18y - 90 + 5$$

$$0 = 9y^2 + 71y + 140$$

$$x = -3\left(-\frac{35}{9}\right) - 15$$

$$0 = (9y + 35)(y + 4)$$

$$0 = (9y+35)(y+4) \qquad x = \frac{35}{3} - \frac{45}{3} = -\frac{10}{3} \qquad 3x^2 - 10x - 8 = 0 \qquad y = -2 + 5 = 3$$

$$xy = -4$$

d)
$$xy = -4$$

 $3x - 2y = -10$ $xy = -4$
 $y = -\frac{3}{2}x + 5$

$$x\left(-\frac{3}{2}x+5\right) = -4$$

$$-\frac{3}{2}x^2 + 5x = -4$$

$$y = (-3y-15) + 6(-3y-15) + 5$$

$$y = 9y^{2} + 90y + 225 - 18y - 90 + 5$$

$$0 = 9y^{2} + 71y + 140$$

$$x = -3\left(-\frac{35}{9}\right) - 15$$

$$\frac{35}{2}x^{2} + 5x = -4$$

$$y = \left(-\frac{3}{2}\right)\left(\frac{4}{3}\right) + 5$$

$$3x^2 - 10x - 8 = 0$$

$$y = -2 + 5 = 3$$

$$y = -\frac{35}{9} \text{ or } y = -4 \qquad x = -3(-4) - 15$$

$$x = 12 - 15 = -3$$

$$x = \frac{4}{9} \text{ or } x = -2 \qquad y = 3 + 5 = 8$$
Solutions: $\left(-\frac{10}{3}, -\frac{35}{3}\right) \text{ or } (-3, 4)$

$$x = \frac{13 - 3y}{2}$$

$$\left(\frac{13 - 3y}{2}\right)^2 + y^2 = 13$$

$$\frac{1}{4}(169 - 78y + 9y^2) + y^2 = 13$$

$$9y^2 - 78y + 169 + 4y^2 = 4 \times 13$$

$$13y^2 - 78y + 117 = 0$$

$$13(y^2 - 6y + 9) = 0 \qquad x = \frac{13 - 3(3)}{2}$$

$$13(y - 3)^2 = 0 \qquad x = 2$$

$$y = 3$$

$$y = 3$$

$$x^2 + y^2 - 6y = 1$$

$$xy = -6$$

$$\frac{-6}{y^2} + y^2 - 6y = 1$$

$$36 + y^4 - 6y^3 = y^2$$

$$y^4 - 6y^3 + 36 - y^2 = 0$$

$$-y^3 (6 - y) + (6 + y)(6 - y) = 0$$

$$(6 - y)(y - 2)(y^2 + 2y + 3) = 0$$

$$y = 6 \text{ or } y = 2$$
Solution: $(0, 0)$ or $(-3, 2)$

$$(3x - 4)(x + 2) = 0 \qquad y = \left(-\frac{3}{2}\right)(-2) + 5$$

$$x = \frac{4}{9} \text{ or } x = -2 \qquad y = 3 + 5 = 8$$
Solutions: $\left(\frac{4}{3}, 3\right) \text{ or } (-2, 8)$

$$f) \qquad 4x^2 + y^2 = 16$$

$$y = x^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$4x^2 + (x^2 - 4)^2 = 16 \qquad y = (0)^2 - 4$$

$$x^4 - 4x^2 = 0 \qquad x^2 (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad y = (\pm 2)^2 - 4$$

$$x^2 + (x^2 - 4) = 0 \qquad x = (-2, 0)$$

$$x = (x^2 + 2)(x^2 - 2) = 0 \qquad x = (-2, 0)$$

$$x = (x^2 + 2)(x^2 - 2) = 0 \qquad x = (-2, 0)$$

$$x = (x^2 + 2)(x^2 - 2) = 0 \qquad x = (-2, 0)$$

$$x = (x^2 + 2)(x^2 - 2) = 0 \qquad x = (-2, 0)$$

$$x = (x^2 + 2)(x^2 - 2) = 0 \qquad x = (-2, 0)$$

$$x = (x^2 + 2)($$

4. Three footballs and one soccer ball cost \$155. Two footballs and three soccer balls cost \$220. Determine the cost of one football and the cost of one soccer ball.

Let F be the cost of a football

And C be the cost of a soccer ball

$$3F + 1C = 155$$

 $2F + 3C = 220$ $\rightarrow C = 155 - 3F$
 $2F + 3(155 - 3F) = 220$
 $2F + 465 - 9F = 220$ $C = 155 - 3(35)$
 $-7F = -245$ $C = 50
 $F = 35

The cost of a football is \$35 and \$50 for a soccer ball.

5. For the athletic banquet, one adult ticket cost \$15.00 and one student ticket costs \$10.00. One hundred forty tickets were sold. The total receipts were \$1600. How many student tickets were sold?

Let A be the number of adult tickets

And T be the number of student tickets

$$A+T = 140$$

$$15A+10T = 1600$$

$$15A+10(140-A) = 1600$$

$$15A+1400-10A = 1600$$

$$5A = 200$$

$$T = 140-40$$

$$T = 100$$

$$A = 40$$

100 student tickets were sold to the athletic banquet.

6. A crate of 36 grapefruit has a total mass of 4 kg. When 12 grapefruit are removed, the total mass is 3 kg. Determine the mass of the crate and the mass of one grapefruit.

Let C be the mass of the crate

And G be the mass of the grapefruit.

$$C+36G=4$$

$$C+24G=3 \rightarrow C=4-36G$$

$$C=3-24G$$

$$4-36G=3-24G$$

$$1=12G$$

$$C=3-24\left(\frac{1}{12}\right)$$

$$C=1$$

The crate's mass is 1 kg and each grapefruit is 83\% g.

7. Jennifer invested \$500, part at 7% per annum and the rest at 10% per annum. After one year, the total interest earned was \$44. How much did Jennifer invest at each rate?

Let A be the amount invested at 7% And B be the amount invested at 10%

$$A + B = 500$$

$$0.07A + 0.1B = 44$$

$$0.07A + 0.1(500 - A) = 44$$

$$0.07A + 50 - 0.1A = 44$$

$$-0.03A = -6$$

$$A = $200$$

$$B = 500 - 200$$

$$B = $300$$

Jennifer invested \$200 at 7% and \$300 at 10%.